Flow chart **Contact info:** Veronica Zanichelli **Geneva University Hospitals** Veronica.Zanichelli@hcuge.ch Poster number: 2254 # Variation in indicators of antibiotic use among and within different settings: a systematic review Excluded Zanichelli V¹, Hulscher M², Gyssens IC², Adriaenssens N³, Pulcini C⁴, Vlahović-Palčevski V⁵, Le Maréchal M⁴, Monnier A², Milanic R⁵, Versporten A³, Harbarth S¹, Huttner B¹ All authors participated on behalf of the DRIVE-AB Consortium. DRIVE-AB is supported by IMI/EU and EFPIA. Infection Control Program, Geneva University Hospitals, Geneva, Switzerland 1 / Radboud University Medical Centre, Nijmegen, The Netherlands 2 / University of Antwerp, Antwerp, Belgium 3 / University of Lorraine, Nancy, France⁴ / University Hospital Rijeka, Rijeka, Croatia⁵ Background: Antibiotic use varies widely across and within settings. As part of the DRIVE-AB project, we performed a systematic review to assess the extent of variation of quantitative metrics and quality indicators of antibiotic use described in the literature. Methods: Studies published in MEDLINE from 01/2004 to 01/2015 were identified using combinations of terms for the concepts "antibiotics", "medication use" and "variation". Only studies reporting variation in metrics or indicators of systemic antibiotic use after 2003 among a minimum predefined number of settings were included. Studies describing variation over time were excluded. All the steps of the systematic review were performed using the Distiller SR® software. #### Levels of variation described: | | "Macro" level | "Micro" level | • | Abstracts
screened
N= 5204 | |------------|---|---|---|----------------------------------| | | Data from ≥ 5 hospitals irrespective of their size <i>OR</i> | Data from ≥ 5 units/wards in the same hospital irrespective of their size <i>OR</i> | | | | Inpatient | Data from ≥ 5 identical units (eg ICUs) from ≥ 5 hospitals irrespective of their size ≥ 2 countries or regions (same or | ≥ 20 providers in the same hospital | | Full texts
screened
N= 628 | | Outpatient | different country) OR ≥5 clinics/primary health care facilities | ≥ 50 providers in the same geographical area | | Included | # after abstract screening N= 4576 Excluded after full text screening N = 481references **Characteristics of included studies:** N = 147 | SETTING | | INPATIENTS | | | OUTPA | TIENTS | | MIXED | TOTAL | |--|-------------------------|-------------------------|--------------------------|-------------------------|------------------------|------------------------|-----------------------|-----------------------|-------------------------| | Level at which the variation is described (n of studies) | Units | Hospitals | Countries | Providers | Clinics | Smaller areas | Countries/ | Countries | Total | | | 27 | 48 | 7 | 9 | 11 | 8 | Regions
35 | 2 | 147 | | High-income
countries
(n,%) | 26
(96.3%) | 43
(89.6%) | 7
(100%) | 7
(77.8%) | 9
(81.8%) | 8
(100%) | 33
(94.3%) | 1
(50%) | 134
(91.2%) | | Middle-low income
countries
(n,%) | 1 (3.7%) | 5
(10.4%) | 0 | 2 (22.2%) | 2
(18.2) | 0 | 2
(5.7%) | 1
(50%) | 13
(8.8%) | | Most frequent WHO region (n,%) | Europe
19
(70.4%) | Europe
27
(56.2%) | >1region
4
(57.1%) | Europe
6
(66.7%) | Europe
5
(45.4%) | Europe
5
(62.5%) | Europe
21
(60%) | Europe
2
(100%) | Europe
88
(59.9%) | | Children included (n,%) | 6
(22.2%) | 8
(16.7%) | 0 | 1
(11.1%) | 3
(27.3%) | 1
(12.5%) | 3
(8.6%) | 0 | 22
(15%) | | Antibiotic
prophylaxis
included
(n, %) | 3
(11.1%) | 3
(6.2%) | 3
(42.8%) | 0 | 0 | 0 | 0 | 0 | 9 (6.1%) | | Single country
(n, %) | 25
(92.6%) | 38
(79.2%) | 0 | 9 (100%) | 7
(63.6%) | 8
(100%) | 13
(37.1%) | 0 | 100
(68%) | | Number of
hospitals/providers
Median (IQR) | 30
(IQR 9.5-44) | 37
(IQR 18.8-127.3) | 21
(IQR 19-31) | 440
(IQR 140.5-4971) | 14
(IQR 12-22.5) | 15
(IQR 14-74.5) | 15
(IQR 10-28) | N/A | N/A | ### **Results:** - 147 studies met inclusion criteria - 55.8% (n=82) described variation exclusively in the **inpatient setting**, mainly among different hospitals (n of studies=48) - In the **outpatient setting** variation was mainly described among countries or regions (n=35, 55.5%) - Overall the two most frequently reported metrics were % of patients treated with antibiotics, often for specific populations or indications (n=67, 45.6%) and defined daily doses with different denominators (n=54, 36.7%). - Figures below show the most frequently reported quantity metrics # Among hospitals # Reported variation in antibiotic use in DDD/1000 inhabitants-day #### Among countries # Among ICUs #### Reported variation in % of treated patients #### Among LTCFs # **Conclusions:** - There is a large variation in metrics of antibiotic use even across similar settings - Most data are based on retrospective observational studies from high-income countries, with a predominance of European studies - More data from low and middle-income studies are urgently needed - Given the close link between antibiotic use density and antimicrobial resistance development, understanding the reasons behind the observed variation seems crucial to design effective antibiotic stewardship interventions